Nanowires are Hot

by Griffin Merians

A study conducted in Taiwan and published in Nanoscale Research Letters, found that the use of silicon nanowires can be used to improve solar thermal energy efficiency. Solar energy is the most abundant source of renewable energy on our planet, and using thermal energy to capture this energy could play a key role in increasing our use of this form of alternative energy. Solar thermal energy is comparatively inexpensive, easy to implement, and efficient compared to many other forms of energy, and using silicon nanowires could be the latest breakthrough in improving this efficiency. Silicon and silicon nanowires are used extensively in photovoltaic electrical energy generation, but have not traditionally been used extensively in thermal energy collection. However, new research into the thermal properties of silicon nanowires has found they are significantly more efficient in thermal conversion than traditional silicon plates. Continue reading

Everything is Better Deep-Fried

by Briton Lee

Scientists have been searching for a way to make batteries hold longer charges, on both a commercial and industrial scale. South Korean researchers have made headway in this development, creating a form of 3D graphene “pom-poms” that have a much more efficient energy capacitance than normal graphene.

Graphene can be used as a supercapacitor due to its stability, high conductivity, and large surface area. 3D graphene capacitors are even better because their greater surface area enhances their capacitance. Graphene capacitors are relatively simple, with a carbon-only structure, and versatile enough to incorporate into batteries as electrodes. However, current ways of manufacturing graphene electrodes yield thin films that may stack and aggregate, which decreases surface area and makes the resulting material more difficult to process. These issues have led to the development of graphene foams and aerogels, but these can’t be used as electrodes because they’re too irregular and not as carbon-dense. Thus, scientists are currently looking to develop ways to create 3D carbon nanostructures for potential use as battery electrodes. Continue reading