Self-Biased Solar-Microbial Device for Sustainable Hydrogen Generation

by Allison Kerley (Photo above of Hanyu Wang, first author of this paper at the University of California, Santa Cruz.)

Most hydrogen generating devices require an external addition of a 0.2 to 1.0 V electric potential in order to sustain the hydrogen generation. Wang et al. (2013) explored the feasibility of a self-powering photoelectrochemical-microbial fuel cell (PEC-MFC) hybrid device to generate hydrogen. The PEC-MFC was a combination of a photoelectrochemical fuel cell and a microbial fuel cell. The Hydrogen production of the device was tested when powered by a ferricyanide solution inoculated with a pure strain of Shewanellla oneidensis MR-1 and when powered by microorganisms found naturally occurring in the municipal wastewater. In both scenarios, given replenishments of fuel, the device produced enough voltage to be self-sustaining. However, when the device was powered by wastewater it produced both a lower current and a smaller hydrogen production than when powered by ferricyanide solution. Continue reading