Hydrogen Cars: Open Roads but with out Enough Filling Stations

by Kieran McVeigh

This weekend as I zoomed along the ten freeway passing thousands of cars I found myself wondering what happened to Hydrogen fuel cars that in the early 2000’s were heralded as the next big thing. A late January article in Bloomberg technology gave me my answer, hydrogen fuel cells cars are alive and well. Many car manufacturers are preparing to or have already rolled out commercially available hydrogen fuel cars but these cars face major logistical hurdles because of the lack of available hydrogen fuel stations.

With the introduction of Toyota’s Mirai, hydrogen fuel cell cars became commercially available in 2016, however Hydrogen comes at a price as a Mirai starts at about 60,000 dollars. Toyota currently only makes 3,000 Mirai a year so if demand and production ramp up this price will likely decrease. The major hurdle more then the relative expense of hydrogen fuel cell cars is the lack of network of filling stations. California leads the way with a total of 100 hydrogen fuel stations. Hydrogen fuel manufacturers insist that government subsidies are necessary for hydrogen fuel infrastructure to be completed, saying the costs of creating hydrogen fuels stations currently outweigh the benefits. As the all-too familiar problem surrounding global warming of how to get people take responsibility for our planets wellbeing when it will cut into their pocket books. Continue reading

South Korean Scientists Develop New, More Efficient Method of Producing Hydrogen

by Gage Taylor

Inspired by the way plants convert sunlight into energy, scientists at the Ulsan National Institute of Science and Technology in South Korea have developed a new type of photoelectrode that boosts the ability of solar water-splitting to produce hydrogen, an essential process in the development of hydrogen as a fuel source. The special photoelectrode is capable of absorbing a high percentage of visible light from the sun and then using it to split water molecules into hydrogen and oxygen. The multilayered photoelectrode has a two-dimensional hybrid metal-dielectric structure that consists of three layers: gold film, ultrathin TiO2 (titanium dioxide), and gold nanoparticles. According to the team’s study published last month in Nano Energy, this structure shows high light absorption, which in turn significantly enhances its photocatalytic applications. Continue reading

Of the many Energy Storage Systems, Integrated Hydrogen-Oxygen Storage Stands Out

by Tim Storer

Wind power comes with the disadvantage of intermittent gaps in energy production and instances of excess supply. This variability puts strain on the electric grid and is the primary barrier to large-scale wind power integration. In order to combat this issue, various forms of energy storage have been considered to bridge the gap between supply and demand of wind power. Gao et al. 2014 conduct a brief literature review on all existing energy storage systems (ESS) for wind power. Each method comes with drawbacks associated with scale, cost, or safety, but hydrogen-oxygen storage was seen here as the best future option. By improving storage technologies, wind energy will become more viable in the market and help to reduce the share of energy coming from fossil fuels that contribute to climate change. In addition to the literature review, this study examined a possible hydrogen-oxygen ESS in Jiangsu Province, China and saw that such an operation could be profitable in the current market.

While there are some operational forms of ESS, there is a variety of issues preventing ESS –and subsequently, wind power– from becoming widespread energy sources. For example, battery power is too costly and difficult to build at a large scale, systems that involve pumping water upward for energy storage have geographical limitations, and magnetic energy storage has low storage time. In the case of hydrogen generation from electrolysis, the costs are simply too high to be competitive in the energy market with capital costs of 1000-2500$/kW (when they need to be near 400 $/kW).

Hydrogen-oxygen combined storage consists of electrolyzers that break water down into hydrogen and oxygen. The hydrogen and oxygen are combusted to form super-heated steam that powers turbines. The system is closed, and uses water as a recycled fuel. Gao and colleagues examined three variants of hydrogen-oxygen ESS: simple integrated ESS, integrated ESS with a feed water heater, and an integrated ESS with both a feed water heater and a steam reheater. In simple terms, these systems each contain an additional measure to capture heat from the steam turbines and use that heat elsewhere in the process, thus improving efficiency. All of these integrated systems contain a complex web of mechanisms that can be adjusted alongside price fluctuations in the power market to minimize costs. The former two had roughly equivalent efficiencies of 49%, but the latter system had efficiency of up to 54.6%, thus demonstrating the benefits of feed water heaters and steam reheaters.

While the 54.6% efficiency of the fully integrated system is marginally below that of some other ESS technologies, hydrogen-oxygen systems come with certain advantages. They can be implemented on a large scale, are fully eco-friendly, not limited by geographical and material restraints, and can be adjusted rapidly based on demand changes. The system was analyzed under two extreme scenarios: an “intermittent operation mode” simulating an extremely variable wind supply, and “continuous operation mode” simulating a perfectly steady supply. Because of how effectively the system dealt with times of low wind, it was actually more profitable under the intermittent scenario with annual income of $13 million per year. Real wind conditions lie somewhere between these extremes, and efficiencies of approximately 50% and prices of 0.03–0.05$/kWh were estimated.

Dan Gao, Dongfang Jiang, Pei Liu, Zheng Li, Sangao Hu, Hong Xu, 2014. An integrated energy storage system based on hydrogen storage: Process configuration and case studies with wind power. Energy, Vol. 66: 332–341.

http://www.sciencedirect.com/science/article/pii/S0360544214001170

 

 

Norway’s Path to Zero Emissions: Large Scale Hydrogen Production from Off-Grid Renewable Sources

by Tim Storer

Norway currently generates over 95% of its power from hydroelectric dams, making it one of the most climate friendly energy systems on the planet. In efforts to bring Norway carbon neutral by 2050, the government aims to eliminate emissions from the transportation sector. Konrad Meier of the Stuttgart University of Applied Sciences examines the possibility of using a hypothetical 100 megawatt offshore wind farm to generate hydrogen fuel via electrolysis. Because water hydrolysis uses only electricity and water, it offers an emissions-free means to generate hydrogen as long as the electricity is generated from a renewable source, such as wind power. This could achieve Norwegian political goals of carbon neutrality by providing the hydrogen necessary to transform their transportation sector. Unlike other proposed wind-to-hydrogen technologies, Meier examines an off-grid operation, rather than producing hydrogen at the fuel refill site. The analysis was conducted under three scenarios, and the hydrogen from this proposed operation is profitable in the energy market under only the “best case” scenario.

This is a clever use of wind power for several reasons. First, if this operation were integrated into the power grid, wind variability would become an issue. Keeping the production off-grid avoids costs of transmission infrastructure and variable supply. Second, the variability also makes exporting excess power to the E.U. infeasible. The remaining 5% of domestic power is more likely to come from untapped hydroelectric resources, so wind has no use in Norway either. Using wind power for hydrogen synthesis circumvents these issues that have previously prevented wind production from being a viable energy source in Norway.

To examine costs, Meier used a location proximal to an operational German wind farm, Alpha-ventus, and incorporated its data. He uses 2010 data as his “worst case” scenario, which is a very conservative baseline considering how much lower the power output had been in previous years and how the proposed system would not be subject to transmission losses. The “best case” scenario was calculated simply by the predicted estimates. Given the likely increases in electrolysis efficiency in upcoming years, this scenario also yields conservative estimates of overall output costs. Meier discusses four types of electrolysis, but focuses on proton exchange membrane electrolysis cell (PEMEC) and solid oxide electrolysis cell (SOEC) that require water as the only input material. Unfortunately, research on the efficiency of PEMEC and SOEC is unable to offer precise estimates, and herein lies a major source of ambiguity in the study.

Because there is currently no market for hydrogen transportation fuel, this study is limited by the assumption of a future in which infrastructure has been implemented to support a hydrogen market. Unfortunately, given how variable the results are (dependent on optimistic/pessimistic assumptions), it is unclear whether such an investment is worthwhile at all. However, in as much as the best and worst case scenarios were estimated in a very conservative way, it is possible that such an operation could be an economic way to transform the transportation sector. Further research is needed on the efficiency of the PEMEC and SOEC processes to indicate whether the proposed wind farm is an economically viable solution to attaining a carbon neutral transportation sector.

Konrad Meier, 2014. Hydrogen production with sea water electrolysis using Norwegian offshore wind energy potentials. International Journal of Energy and Environmental Engineering Vol. 5: 1–12. http://link.springer.com/article/10.1007/s40095-014-0104-6/fulltext.html#CR1