Comparison of Carbon Footprints of Electric and Gasoline Vehicles

by Bradley Newton

Authors Yuksel, Tamayao, Hendrickson, Azevedo, and Michalek (2016) have conducted a study concerning the carbon footprints of electric and gasoline vehicles. They cite several past studies looking at a similar topic, but point out that none of those studies accounted for grid emissions (pollution created by generated electricity), people’s driving patterns, and how diverse temperatures are in different regions. It is also pointed out that past studies used vehicles of differing battery life spans, which can make comparisons harder. The factors that the authors of the study look at for their comparisons are: availability of electricity for Plug-in electric vehicles, temperatures of studied regions, vehicle miles traveled, and driving conditions (meaning whether it is city or highway driving). The vehicles they used were a mix of conventional, hybrid electric, plug-in electric, and battery-electric vehicles. They were driven to the end of their life-cycle (complete depletion of gas tank or battery) and had their respective CO2 emissions measured. Continue reading

Comparison of Carbon Footprints of Electric and Gasoline Vehicles

by Bradley Newton

Authors Yuksel, Tamayao, Hendrickson, Azevedo, and Michalek (2016) have conducted a study concerning the carbon footprints of electric and gasoline vehicles. They cite several past studies looking at a similar topic, but point out that none of those studies accounted for grid emissions (pollution created by generated electricity), people’s driving patterns, and how diverse temperatures are in different regions. It is also pointed out that past studies used vehicles of differing battery life spans, which can make comparisons harder. The factors that the authors of the study look at for their comparisons are: availability of electricity for Plug-in electric vehicles, temperatures of studied regions, vehicle miles traveled, and driving conditions (meaning whether it is city or highway driving). The vehicles they used were a mix of conventional, hybrid electric, plug-in electric, and battery-electric vehicles. They were driven to the end of their life-cycle (complete depletion of gas tank or battery) and had their respective CO2 emissions measured. The authors decided that the driving conditions of an area would be based off its urbanization level, VMT (Vehicle Miles Traveled) would be obtained from the National Household Travel Survey from its respective state, and they assigned marginal grid emission factors (amount of electricity available) for each North American Electric Reliability Corporation (NERC) to the counties that lie within their encompassed area. Continue reading