Risks that Hydraulic Fracturing Poses to Water Sources

by Alex Frumkin

There has been a rapid increase in shale gas development in the united States due to the increase in use of hydraulic fracturing to access these shale beds. The rise of hydraulic fracturing has lead to intense public debates about the potential environmental and human health effects from hydraulic fracturing. Vengosh at el. (2014) identifies four potential areas of risks for water resources from hydraulic fracturing: contamination of shallow aquifers due to stray gas contamination, contamination of surface water and shallow groundwater from spills, leaks, and/or the disposal of inadequately treated shale gas wastewater, accumulation of toxic and radioactive elements in soil near disposal or spill sides, and the over extraction of water resources that could induce water shortages. To be able to fully understand the water contamination risks associated with hydraulic fracturing there needs to be an in depth investigation of the hydrology, hydrogeology, water chemistry, and isotopic tracers for identifying what the cause of the water contamination is. Continue reading

Distance: a Critical Aspect for Impact of Hydraulic Fracturing

by Alex Frumkin

Hydraulic fracturing is the process used to access than one-half o the U.S.’ natural gas supply and is rapidly changing the energy supplies in the United States. The popularity of unconventional drilling is increasing over the past decade, and scientists are continuing to analyze the environmental impacts of hydraulic fracturing. While public concerns are encouraging scientists to continue to evaluate the possible adverse effects related to hydraulic fracturing, Ming et al. (2014) focus on understanding the current research of these environmental impacts within a spatial content. The authors set out to better understand what the environmental impacts related to how close an area or home is to an active fracking well. They find that there are five key areas that are more likely to be impacted due to proximity to a gas well. These five areas are that the closer drinking and groundwater are to a fracking site the more likely the water is to be contaminated, that residents living nearest to fracking wells will experience higher human health risks, high density gas emissions are detected, small earthquakes are more frequent and common near a fracking well, and that there are changes to the landscape characteristics. These assessments are imperative for better understanding the impacts of hydraulic fracturing on both the environment and on human’s health. Continue reading

Will Increased Natural Gas Usage Decrease the Effects of Climate Change?

 

by Alex Frumkin

The improvement of hydraulic fracturing technologies in the last decade has allowed access to previously uneconomic shale gas resources across North America. Natural gas production is often touted as a way to cut carbon emissions to slow down climate change because gas-fired power plans emit roughly half as much CO2 per unit of energy produced as coal-fired plants. There are some assessments that have been completed, though, that argue that natural gas lifecycle emissions are actually higher than those of coal because of emissions from shale gas production. In line with this latter idea, Mcjeon et al. (2014), show that market-driven increases in unconventional natural gas production does not discernibly reduce the trajectory of greenhouse gas emissions or climate forcing. Continue reading

Is there a relationship between proximity to natural gas wells and health?

by Alex Frumkin

There has been little research about the public health impacts of living near unconventional natural gas extraction activities. Rabinowitz et al. a (2015) aimed to assess a possible relationship by generating a health symptom survey of 492 people in households with ground-fed wells in an area of active natural gas drilling. The survey looked at the household’s proximity to gas wells and then the prevalence and frequency of reported dermal, respiratory, gastrointestinal, cardiovascular, and neurological symptoms. The study found that individuals who lived within 1 km of a gas well were twice as likely to experience upper respiratory systems than individuals in households more than 1 km away. No relationship found between well proximity and any of the other possible health conditions that this survey covered. Continue reading

What can CCS learn from hydraulic fracturing acceptance?

by Alex Frumkin

Carbon capture and storage (CCS) faces potential obstacles when it comes to the development and deployment of the technology. Many of these challenges are strikingly similar to those faced by proponents of hydraulic fracturing, especially the challenge of social acceptance of this technology. Due to these similarities, Wolff et al. 2014 uses hydraulic fracturing as a comparison to identify potential strategies for future carbon capture and storage efforts. When using hydraulic fracturing industry as a comparison the authors consider not only the act of fracturing, but also the process of obtaining mineral rights and the waste removal process. This comparison is achieved by completing statistical analysis on the relationship between state demographics and the stringency of state regulations of the hydraulic fracturing industry. Ultimately, the authors find that states that are familiar with the oil and gas industry have less variable regulation of hydraulic fracturing. In addition, they recognize a disconnect between the regulations of hydraulic fracturing at the state level and at the local level. This tension suggests that carbon storage proponents should focus on local engagement not just on state level. Continue reading

c Perceptions of Hydraulic Fracturing

by Alex Frumkin

Hydraulic fracturing is considered controversial for many reasons, including the possible negative environmental impacts, the possible economic benefits of development, and reduction of reliance on foreign oil. Previous national opinion polls have indicated that a sizable minority of the population lack familiarity with this largely unregulated field. Boudet et al. (2014) studied different socio-demographic indicators will predict support of or opposition to hydraulic fracturing. Continue reading